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I. INTRODUCTION: THE BASIS OF QUANTUM COMPUTING 

A. SCHRÖDINGER, EPR, AND BELL (OR, WHEN A TREE FALLS IN THE 
FOREST...) 

Quantum information is a major initiative in the physical and informational 

sciences which traces its roots back to the gedanken experiments of Schrödinger and 

Einstein, Podolsky, and Rosen (EPR). EPR, following a "Schrödinger's cat" line of 

thinking in an attempt to validate the "no-dice" opposition to quantum theory, pointed out 

that the linear superposition principle of quantum mechanics implied that so-called 

"entangled" states allowed by the theory could be created in such a way as to violate 

supposedly natural criteria (such as locality). In their quest for a deterministic explana- 

tion, EPR concluded that quantum mechanics was invalid and that the notional collapse 

of a superposition of quantum states was illusory. That is, the evolution of quantum states 

was deterministic but somehow hidden from measurement. Bell [12] sought to address 

these ideas in formulating the Bell inequalities for hidden variable theories; these 

inequalities were experimentally testable hypotheses which could conclusively confirm 

or deny the nondeterminism of quantum mechanics. 

The first test of Bell's inequalities was conducted by Lamehi-Rachti and Mittig 

[90] in 1976; their results disagreed with hidden-variable interpretations but were 

inconclusive. Later experiments progressively wore away at hidden-variable theories; in 

1996, the creation of a quantum superposition was experimentally verified [106], and the 

days of the hidden-variable theories were conclusively over. 

The resolution of this basically metaphysical issue has significant implications for 

national security and the physical and informational sciences. Its potentially profound 

effect on the evolution of these fields (and, in particular, their intersection) is the 

motivation for this discussion. 

B. PROTOTYPE TWO-STATE QUANTUM SYSTEMS: QUBITS 

Consider (via identification or analogy with, e.g., the polarization of a photon or 

the spin of an electron) a quantum-mechanical system whose Hilbert or state space ^Tis 

generated by two basis states, denoted |0) and |1). A general state \a) is then a unit norm 
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linear superposition of the basis states. That is, we have \a) = a|0) + ß\\), with |af + |/3|2 = 

1. We refer to such a state as a qubit. The probability that measurement of a qubit \a) 

results in the outcome of state |0) (resp., |1» is \a\2 (resp., \ß\2). We can use an operator 

rather than a state vector to describe the system; in this setting we consider the density 

matrix pa = \a){a\. Measurements correspond to the projection operators x0 = |0)(0| (resp., 

7T, = |1)(1|), and the associated probabilities can be obtained by noting that 7>(|0)(0|pfl) = 

a(resp.,:rr(|l><l|pfl) = jB). 

Now consider a collection of n such systems: the Hilbert space Jf of the resulting 

composite system is the tensor product of the subsystems, which has dimension 2". A 

general state is now a linear superposition of the basis states (which can be expressed as 

bit vectors or decimal numbers in the canonical computational basis) in Jf. It is easy to 

see that there are then necessarily states in 9f which are not themselves tensor products 

of qubits; these are referred to as entangled states. Using the shorthand \ab) or \a)\b) for 

\a)®\b) (and ignoring a normalization factor), we note, for example, that |00) + |11) is 

such a (maximally) entangled state, called an EPR pair, of which a measurement in the 

computational basis can result in only two possible outcomes (|00) or |11))—whereas in 

general a measurement of a two-qubit system may result in any of four possible outcomes 

(|00),|01),|10>or|ll>). 

C.   QUANTUM PARALLELISM VIA ENTANGLEMENT 

The notorious difficulty of the quantum-mechanical TV-body problem is a 

consequence of the fact that linear growth in the number of particles results in 

exponential growth in the dimension of the Hilbert space—and hence in the cost of 

simulation. Theoretical work on the thermodynamics of classical computation by Bennett 

[15] and Fredkin and Toffoli [60] and on the simulation of Turing machines with 

quantum systems by Benioff [13] led Feynman [57] to argue that this problem could in 

some sense be its own solution: a quantum mechanical system that was more or less 

impossible to simulate classically could be effectively simulated by another quantum 

mechanical system. (In fact, a quantum computer can do the job, as we will see; quantum 

mechanical simulation would probably be the first real use of the technology if a fully 

operational quantum computer with over 30 or so qubits was developed [94], [95].) 

Introducing the Walsh-Hadamard operator (with matrix in the computational 

basis), 
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Wm4i 
1   fl      1 A 

1    -1 
V 

we see that W]0) = (|0) + |1))/V2. That is, applying the Walsh-Hadamard operator to the 

"ground" state gives a uniform superposition of the basis states. This operator (geometri- 

cally realized as the composition of a rotation and a reflection) is a precursor to more 

sophisticated unitary operators or quantum gates. If we consider the tensor product Wn 

(acting on Of) of n single-qubit Walsh-Hadamard operators, we obtain 

V2     ;=0 
n „ n 

where/ = ^ik2
k, |i)= ®\ik); (f,;)s X'*■/*• 

Forming W„|0.. .0) = W|0) ® ... ® W|0>, we obtain a uniform superposition of all the basis 

states in the total Hilbert space; a measurement results in an outcome of an arbitrary bit 

string of length n with probability 2~". Applying a quantum gate to this superposition is 

equivalent to superposing the states resulting from applying the gate to each (suitably 

normalized) basis state. This is the prototype of quantum parallelism. 

Although measurements of such a state give a procedure for generating random 

numbers, it is far from clear how to generalize it (much less actually physically imple- 

ment it) in such a way as to actually do anything useful that could not be achieved much 

more easily with (say) a radioactive decay source. Indeed, the bright light of quantum 

parallelism casts a dark shadow of quantum measurement and decoherence. Even if we 

can somehow implement a technique for entangling and manipulating qubits, we are lost 

without a way to measure the desired basis state with a probability greater than 2~" or if 

the environment collapses our superpositions. The discovery of a realizable algorithmic 

technique (the quantum Fourier transform) by Coppersmith [44] for generating construc- 

tive interference of desirable states marked a crucial step towards realizing the utility of 

quantum computation. 

D.   DECOHERENCE 

One of the fundamental tenets of quantum mechanics is that a measurement 

collapses a quantum superposition into a fixed state. The question of precisely what 

defines a measurement is subtle, however; indeed, interactions between the external 

environment and a quantum superposition will generally force nondiagonal elements of 
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the density matrix to become negligible, and the initially coherent phases of subsystems 

will decouple. 

Efficient algorithms for quantum computation can provide an answer to the 

measurement problem as applied to a system of qubits isolated from their environment, 

but in fact a system of qubits will rapidly interact with its environment—no matter how 

weak the coupling—and the superposition will effectively collapse. The degree to which 

this process of decoherence can be delayed is the x-factor in building real-world quantum 

computers. 

Omnes [109] sketches a mechanism for the decoherence of a single qubit as a 

consequence of interaction with an (internal) environment of n (externally) noninteracting 

qubits; we will follow his treatment. Such a system can be described by a Hamiltonian of 

the form 

H = H in, =(7>g ,. ®W. ®<r, ® ® Id, , 

where cw = -|0)<0|w + |1><1|W, Id(k) denote single-qubit identity operators, and gk are 

coupling constants. The state 

i V(r)) = fl|0) ® ^\Q\ + ßte-*< \\\ > *|l)® &*"*•' |0)t + ßke*" \l\ ) 

then satisfies the Schrödinger equation; the reduced density matrix for the qubit (obtained 

by performing a partial trace over the environmental degrees of freedom) is 

p = rr,|^(r)){^P(r)|-H2|0)<0| + lfe|2|l><lKz(r)aH0){l| + z(/)^|l><0| ; 

z{t) = fl cos2gkt + i(\ßtf -|at|
2)sin2gA. 

It can be shown that 

(Koi2)=2-"n[i+(iÄi2-Ki 

If the initial state of the environment (i.e., the distribution of ak, ßk) is random, then this 

quantity is exponentially small. This effective diagonalisation of the density matrix is the 

hallmark of decoherence: the probabilities of quantum superpositions decrease rapidly as 

a result of interactions. 

Avoiding decoherence in experiments (much less actual physical quantum 

computers or channels) is made especially difficult because of interactions with the 
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external environment, which is a much harder problem to address than avoiding 

undesired qubit-qubit interactions. Consider for example the case of a harmonic oscillator 

weakly coupled to a bath of harmonic oscillators [109]. If the harmonic oscillator is 

prepared in a superposition of two harmonic oscillator coherent states, the decay of the 

off-diagonal elements is exponential with a characteristic time given by 

2ht 

m(o{xl(0)-x2(0)) 

(the expression given in [109] contains errors) where T is the damping time of the 

oscillator. For a quartz oscillator with fundamental frequency /= 2KCO = 50 MHz, mass m 

~ 10"25 kg (mass of the Si02 molecule), initial coherent state separation Ax = x,(0) - x2(0) 

= 10"10 m (1 A), and Q = cor ~ 103, we find T0 = 3 s. If we include the effects of 

temperature the characteristic time is [137] 

n2T 
2mkT(Xi(0)-x2(0)) 

The ratio of characteristic times is given by TT/T0 = hco/kT, that is, by the ratio of excited 

to thermal energies. So the same quartz oscillator at T = 300 K has a characteristic 

decoherence time of about 0.3 us, indicating the dramatic and constraining effects of 

temperature. (DiVincenzo [49] lists decoherence times for other physical systems that 

have been proposed for quantum computer realizations.). Low temperatures can delay the 

onset of decoherence (indeed, the first evidence of a macroscopic quantum superposition 

was recently obtained for a superconducting quantum interference device at a few 

degrees Kelvin [Al]). 

To use a system, it must have some coupling to the external environment, and it is 

therefore subject to rapid decoherence. This Catch-22 can be circumvented by employing 

quantum error-correcting codes, whose independent discovery by Shor and Calderbank 

[34] and Steane [127] made quantum information technology a realistic goal. But 

whether that goal will ever be fulfilled (and if so, when—and how) is still an open 

question. 

E.   THE STATE OF THE ART 

The high degrees of interest and promise in quantum communication and 

quantum computation are largely due to the central results of Bennett and Brassard [16], 

who designed a provably secure [123] communication protocol (BB84) using a quantum 

channel, and Shor [122], who devised an algorithm for finding the period of a sequence 
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exponentially faster than currently possible. This technique can be used to efficiently 

factor composite numbers or to calculate discrete logarithms, and so public-key 

cryptosystems and authentication protocols based on the supposed computational 

infeasibility of these number-theoretic problems, such as (among others) RSA [115], 

ElGamal [55], and the Digitial Signature Algorithm (DSA)—the key element of the 

federal Digital Signature Standard (DSS) [59]—would therefore be rendered useless in 

the face of a quantum computational attack. 

Various search algorithms proposed by Grover [67] and others raise the 

possibility of pattern-matching and recognition schemes of hitherto unimaginable power. 

Simulation of quantum mechanics and other physical systems [1], [2], [25], [135] could 

provide the tools necessary to design nanostructures [8]. A number of applications to 

statistical and numerical analysis (e.g., [3]), signal analysis, and so forth, have been 

discovered that are possible only in the realm of quantum computation. Exploitation of 

the universality and quasi-physical evolution properties of quantum cellular automata 

[39], [131] also holds theoretical and practical promise [14], [25], [103], [134]. Further 

significant theoretical advances are almost surely on the horizon. 

Finally, although decoherence poses a formidable obstacle to the realization of 

quantum computers even with the use of quantum error-correcting codes, experiment- 

alists have nevertheless recently constructed entangled states of four [116] and seven [85] 

qubits using ion trap [128] and liquid-state NMR [79] architectures, respectively. 
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II. BASIC THEORETICAL MODELS 

A.   LOGIC GATES 

It so happens that universal sets of logic gates suffice to perform classical digital 

computation. If, for example, we consider the XOR (exclusive-OR or controlled NOT) 

and AND gates (which correspond, respectively, to addition and multiplication in the 

field F2 = Z2), we can write any Boolean operation as an appropriate composition of these 

operations. 

The principle of unitary evolution in quantum mechanics leads to time symmetry, 

however, and therefore any classical logic gates that we hope to carry over to the 

quantum regime must be reversible. Indeed, Landauer [82] and Bennett [15], in their 

analyses of fundamental lower bounds on heat dissipation resulting from computation, 

showed that models of classical reversible computers could be constructed. Key to such a 

construction is the augmentation of nominally one-output gates. For example, the 

augmented (reversible) XOR gate acts as A,B\-+ A,A©B. It is noteworthy that a quantum 

XOR gate was physically realized in an ion trap as long ago as 1995 [106]. This is by no 

means a trivial thing: a quantum XOR gate acting on the (normalized) state |00) + |10) 

produces an EPR pair, and vice versa. 

DiVincenzo showed [50] that two-qubit gates can be combined to form a 

universal three-qubit gate and hence that two-bit gates are universal for quantum 

computation. However, the gate decomposition provided therein was impractical. Sleator 

and Weinfurter proved that the gate with matrix in the canonical computation basis 

f\ 0 0 0        ^ 

0 1 0 0 

0 0 effl'/4cos7r0 e""/4sin^e 

lo 0 e"*"4 sin »re e^cosjre. 

is universal [126]. Lloyd went further and demonstrated that almost any quantum gate 

with multiple inputs is universal. The key to this discovery was the realization that the 

algebra generated by two distinct n-qubit Hamiltonians is the space of Hermitian 

operators on jf", unless both Hamiltonians lie in a submanifold of positive codimension 
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[95]. Finally, it was demonstrated that one-bit and quantum XOR gates form a universal 

set [6]. 

Therefore, we can formally consider quantum computers as universal models for 

computation. The role in quantum computation analogous to that of Turing in the arena 

of classical computation could be said to have been filled by Feynman; it is to his 

construction we now turn. 

B. FEYNMAN'S QUANTUM METAPROGRAM 

The first step in devising algorithms and programs to run on a formal quantum 

computer was taken by Feynman [57], who constructed a metaprogram in the guise of a 

Hamiltonian on n. + k + 1 qubits, 

ff = Xfli*+ifl.A+i+fl*fl,-+iA*+i , 
i'=0 

where a,*, a, are the creation and annihilation operators (sending |0) to |1) and |1> to |0), 

respectively) on the ith qubit, and A, represents, for example, two-qubit gates acting on n 

qubits. In Feynman's proposal the (k + 1) "program counter sites" (qubits) were initially 

set to |0) save for the initial qubit, which was set to |1); the Hamiltonian would then 

propagate this "cursor" state down the program counter sites, executing the A, [98]. In 

this context quantum gates are easy to express: a + a* corresponds to NOT, a*a(b + b*) 

+ aa* to XOR, and so forth. At the time, however, the utility of such a construct was 

unclear. This remained to be the case for nearly 10 years. 

C. THE QUANTUM FOURIER TRANSFORM 

Indeed, there is a vast gulf between models of universal computation or 

metaprograms and specific algorithms; despite an early recognition of the basic problem 

of how to generate constructive interferences in order to do anything useful with a 

quantum computer, no real progress in this area was made until the discovery (prompted 

by Shor's work) of a realistic quantum Fourier transform (QFT) by Coppersmith [44] and 

independently by Deutsch [47]. The QFT is a prototypical building block for quantum 

algorithms, and its central role can hardly be understated. 

The quantum Fourier transform on n qubits is basically the Fourier transform on 

V 

OFT■■ I/(y)|y) - 4- XX>/27(;P) = 4= X/WI*) • 
7=0 V2      ;=0 A-0 V 2      *=(> 
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It can alternatively be described by the series composition of quantum gates 

QFT = BWJu ..An-AA ... W.-A-^.^-A-!,»^ 

where 

2"-l > .       k-\ n 
B=l   2n-l-k')(k'\, Wk= <g> Idj®W®   ®   Idj, 

k'=0 I 7=1 j=k+l 

yLk 
l\     k'~l 

2l)= ® Idj® 
7=1 

1 0 
x    'n 

0   e    l 

n
 1 ®   Id   v 

j=k'+l 

(note that B is a bit reversal; this evokes the classical FFT [88]). 

In practice (so to speak) the S-gates are simply discarded for small associated 

phases, resulting in a realizable QFT [44]. In fact, it turns out that the approximate QFT 

can actually improve performance for periodicity estimates in the presence of 

decoherence [7]. Finally, it is worth noting that the QFT and Walsh-Hadamard transform 

act identically on |0). 

Various generalizations of the QFT have been outlined. For example, a quantum 

wavelet transform has been developed [52]. Kitaev [83] constructed an analog of the QFT 

for finite Abelian groups (actually cyclic groups Zp of prime order; however, by the 

fundamental theorem of abelian groups [54], this is sufficient). A quantum network of 

gates could be designed to perform such a transform efficiently along lines not entirely 

dissimilar to the Coppersmith construction. In general, a QFT runs exponentially faster 

than a classical FFT—indeed, the QFT requires only a quadratic number of gates; this 

improvement over the 0(n2n) operations required for the equivalent FFT is a central 

result in quantum complexity theory. Tighter bounds on the circuit complexity of the 

QFT can be found in [42]. 

D.   QUANTUM ALGORITHMS FOR SPECIAL ORACLE PROBLEMS 

It has long been recognized that the augmentation of a classical Turing machine 

with an oracle capable of addressing queries with respect to nonrecursive functions (i.e., 

functions not specified by a formula or algorithm but rather as a "black box") would 

allow the efficient solution of problems beyond the scope of an ordinary classical Turing 

machine [11]. With this in mind, Bernstein and Vazirani [22], Deutsch and Jozsa [46], 

and Simon [125] exploited quantum parallelism to exhaust an oracle and thereby arrive at 

quantum algorithms with better performance than is classically possible. To illustrate the 
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nature of the oracle problem in quantum computing we sketch the Deutsch-Josza 

algorithm (DJ). 

The context of DJ is specified by a nonrecursive function /: Z „ -> Z2 which is 

promised or assumed a priori to be either the zero function or to take each of the values 0 

and 1 2""1 times (in which case we refer to it as balanced). DJ differentiates between the 

two cases as follows: 

• Step 0:     Initialize an n + 1 qubit string |0.. .0)|1) (we could also write this as 

|0>|1». 

• Step 1:     Apply the Walsh-Hadamard transform to each register to get 

• Step 2:     Apply the function via | ;)| j) H» | i)\ j © /(/)) to get 

1 x'(-iri')®4(io)-ii», 
4r fa V2 

since 

^riHn««^(|oo/(0>-|io/(0»--^ZIO»^flo)-|i)). 

Step 3:     Invert the Walsh-Hadamard transform on the first register to get 

|4/>®^(|o>-|i», 

where 14?) = j| °!   , v   ^ ^       . 1 J/    \\b}*\0}   if/is balanced 

•      Step 4:     Measure the first register. 

Because of our assumption that the function is either zero or balanced, we can determine 

with probability 1 the answer to the question of which type of function we actually have 

after performing the DJ algorithm. This is somewhat unusual and is an artifact of the 

"promise" made in the problem. It is noteworthy that a classical solution to the problem 

requires 0(2""') steps. 

Simon's algorithm is in the same spirit as DJ but is also slightly more subtle. For 

a nonrecursive function /: Z „ -> Z „ which is assumed a priori to be one of the two cases, 

Simon's algorithm determines (by using the QFT) whether/is one-to-one or two-to-one 

[4], [125]. Despite the exponential speedups these algorithms offer, however, they are 
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essentially toy models; the recent surge in interest in quantum computation derives from 

a far more useful quantum algorithm. 
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in. FACTORING ON A QUANTUM COMPUTER 

A.   SHOR'S ALGORITHM 

Factoring is hard and important; we devote Appendix A to the explanation and 

ancillary results. 

Shor [122] devised an ingenious method for factoring based upon two principles: 

one a known number-theoretical technique [104], the second quantum-computational. We 

outline his results correspondingly. 

If we have a number TV (which we assume not to be a prime power) and the order 

r{x) (i.e., the smallest integer r(x) such that xrM = 1 mod N) of any element x in the 

multiplicative group 

Z;={aeZ„|gcd(a,AO = l} , 

we can consider gcd(xrfxj/2 - 1, N) for x random and such that x^^ mod N^N- 1 and r(x) 

= 0 mod 2. In this event it follows that since {x^12 - 1) (x^2 + 1) s 0 mod N we obtain a 

nontrivial factor. Shor's algorithm determines the order r(x) as follows: 

Step 0: Initialize a In (where N < 2") qubit string |0, 0). 

•      Step 1: Apply the QFT to the first register to get 

1       2"-l 

SM). 
4v%> 

Step 2: Compute x° mod N by using quantum gates that efficiently perform 
binary modular exponentiation for fixed x, N built into the gate structure— 
which can, in turn, be efficiently constructed from gates performing binary 
modular addition (such gates are described in [10], [53], [132]) for each 
element of the superposition: 

1       2"-l 

= Y\a,xa mo&N) 
2"-I 

/2    o=o 

•      Step 3: Apply the QFT on the first register to get 

l^> = ilI«2W2>.^modAr). 
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•      Step 4: Measure both registers. 

The probability of measuring the state \c,x"' mod N) is given by 

7>(| c, x"' mod /V)(c, x"' mod TV || 4')(VF |) 

\l"-l-a'/r(x)\ 
y e2mfc{,tv)c}/2' 

where {r(x)c} s re mod 2", -2""1 < {r(x)c} < 2"_1. If |{r(;t)c}| < r(x)/2, it turns out that this 

probability is approximately 

— f 2m„{r(x)c}/r(x) du 
n{r(x)c} 

f   2   V 

V^/y 

where we have neglected lower order terms. In the limit of large yV (and hence n), the 

probability distribution becomes a Dirac comb with spikes at values of c where there 

exists d such that c = \_d2"l r(x)J.It follows that [since as can be shown there are r<p{r) 

spikes] the probability of measuring a spike state is asymptotically [70] 

4r(p(r) ö 
2    2 r n n log log r 

for a constant 8. Therefore, in principle the measurement problem is solved at this point, 

and from a measurement of a spike we can determine the order r(x) using techniques of 

continued fractions [70], [86]. 

Taking into account repeated trials, Shor's algorithm requires 0((log TY)2 loglog N 

logloglog yV) = 0(n2 log n loglog n) steps; additional polynomial post-processing time is 

necessary to efficiently determine a factor from the order of a suitable element 

classically. The majority of the quantum processing time is spent in performing modular 

exponentiation; more efficient techniques for this can further enhance Shor's algorithm. 

B.    FACTORING AS AN INSTANCE OF THE ABELIAN STABILIZER 
PROBLEM 

Kitaev [83] generalized the factoring and discrete logarithm (Appendix A) 

problems in the context of the abelian stabilizer problem (ASP): given an action a of Z* 

on McZ;, that is, given a:Z'xM->M with ag+h(a) = agah(a), determine a basis of the 

stabilizer Sta(a) = {g : ag{a) = a}. The problem is well posed since the stabilizer is a 

finite-rank subgroup of Zk [54]. To see that factoring is an instance of the ASP, consider 
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M = ZN, G-Z'N and an action defined by ax
m{d) = xma. In this context a basis of the 

stabilizer Sta(X) gives the order r(x). 

We present a sketch of the quantum AS algorithm for factoring. Consider first the 

quotient group E = Z/Sta(l) = Zr{x) and its character group [100] E of homomorphisms 

from E to the circle. A character %h is now characterized by a rational number hlrix) 

between 0 and 1 [i.e., to specify a homomorphism %h from a cyclic group, which we can 

represent as roots of unity, to the circle we need only the number (h) of times %h wraps 

around the circle]. Indeed, a cyclic group is isomorphic to its character group [100] and 

so if we can determine the wrapping number, h, of a generator, then the factoring ASP is 

effectively solved. 

Toward this end we can consider elements of E as shift operators on the orbit of 1 

given by JV = {^(l):meZ} = {/}; the solution of (the factoring instance of) the ASP 

depends on measuring an eigenvalue of such a shift. Kitaev's scheme uses for unitary 

shift operators on ZKx) with eigenvectors Iv*^*)) and corresponding eigenvalues e~2nlhlr(x) a 

transformation such as 

t\        0     V* f 

Id® 2*h/r(x) 
v      vu  e JJ 

{Id ® W) , (id®wy 

which behaves as 

|¥hr{x)) ® 10) ■-» | ww) ® e-"™(coSh(-mh/r(x))\0) + smh(-mh/r(x))\ 1)) , 

to bias the control (second) register. By measuring enough of these identically prepared 

states for binary powers of a shift operator (and performing some subtle handwaving), an 

observer can approximate the phase of an eigenvalue to any desired accuracy with high 

probability in polynomial time [4], [83]. (This methodology is also employed for Kitaev's 

QFT.) This is an instance of so-called eigenvalue estimation, which also appears in 

algorithms for quantum mechanical simulation (see Section V.B.), for example. The final 

step in Kitaev's algorithm as we present it now is to prepare a uniform superposition of 

all the shift eigenvectors (which can also be done efficiently) and use the biasing scheme 

to measure a given value h. 
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IV. SEARCH ALGORITHMS 

A.   FINDING A NEEDLE IN A QUANTUM HAYSTACK 

It is intuitively obvious why a classical search routine applied to an unstructured 

list of N objects must take at least 0(N) steps: if our list has no internal structure then we 

must perform an exhaustive search. (If, on the other hand, we can progressively subdivide 

our list, for example in a balanced binary tree, then we can perform a classical search in 

0(log AO steps.) 

Grover discovered the amazing result that a quantum search for such a "needle in 

a haystack" could be performed in O(ViV) steps [67] (in fact, it has been shown that this is 

also a lower bound [28], [136]). While perhaps less intriguing on the surface than Shor's 

factorization algorithm, Graver's haystack search is certainly more versatile; the under- 

lying technique of amplitude amplification can be brought to bear on a host of problems. 

Grover's haystack search proceeds as follows. We are given an oracle f-.Z"2-*Z2 

with only one target state t such that/(f) = 1. Consider the states 

">-^|l*W-^IW-^I("A01IO 

and the operator R corresponding to a rotation by 6 = cos_1(a|«) on the two-dimensional 

subspace T spanning \a) and \u) (equivalently, \a) and \t)). Furthermore, denote by M\b) the 

reflection Id - 2\b){b\ about the subspace spanned by a single state \b). Though we have 

no direct knowledge of T, it is clear by inspection that R2 = M]b)M\u). Moreover, WMl0)W = 

W1 - 2\a)(a\ = Id- 2\a)(a\ = Mm = Mla) and MJi) = (-l)m \i). Now cos 6 = (a\u) = V(2n - 

1)/V2", so 6 « sin 9 = 2-"'2, and it follows that 

(VW   Ji*H'>- 

Summarizing, we can perform a quantum search as follows: 

•      Step 0: Initialize a n qubit string |0). 
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Step 1: Apply the Walsh-Hadamard transform to get 

Step 2: Rotate to get 

1       2"-I 

|fl>=TrSI0- 

K,«,.,)1   JI«>-IO 

• Step 3: Perform a measurement. 

This yields the correct state with high probability (asymptotically 1). 

The repeated application of a small rotation is generally referred to as amplitude 

amplification. It is a powerful and versatile method. It could be said at present that fast 

quantum algorithms invoke an oracle, a QFT, amplitude amplification, or eigenvalue 

estimation; as it stands, these are the tools of the trade in quantum computing. Below we 

provide a sketch of the generalized Grover search algorithm that serves to illustrate 

amplitude amplification in a more general format. 

B.    GENERALIZED UNSTRUCTURED AND UNSTRUCTURED PARALLEL 
QUANTUM SEARCHING 

Grover's quantum search generalizes to multiple target states and arbitrary 

operators and initial superpositions, as shown by Gingrich, Williams, and Cerf [62]. 

Therefore, quantum search is a viable subroutine for more general programs. Following 

[62], we outline the algorithm: 

• Step 0: Initialize a qubit string 

2-^(|a)|O)-|«)|l)) = 2-"2((|a}-|0)|O)-(|«)-k))|l) + k)|O)-k)|l)), 

where \t) is the superposition of target states. 

• Step 1: Apply the oracle to get 

2-,/2((|«)H^|O)-(k)-|0)|l)-k)|O) + k)|l)) = 2^(|a)|O)-|«)|l)-2(|/)|O}-|f)|l))), 

which is equivalent to applying the inversion operator Id - 2\t)(t\. (Though 
equivalent, this is not the same thing: we do not know what the target states 
are.) 

• Step 2: Pick an inversion state \b) and apply the operator -{Id - 2\b)(b\) an 
appropriate number of times (depending on both the initial and inversion 
states). 
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•      Step 3: Repeat Steps 1-2; after an appropriate number of iterations, perform 
a measurement. 

In this general setting there is a phase condition that governs the probability of 

success for amplitude amplification; this can be used to construct appropriate inversion 

states [76]. 

Gingrich, Williams, and Cerf also analyzed punctuation (premature halting after a 

submaximal number of rotations or inversions) and parallelization of the generalized 

Grover search routine. They found first that punctuation actually speeds up the routine 

and is maximized (12-percent fewer rotations/inversions than the Grover algorithm, 

which, it should be recalled, is therefore 12-percent faster than the quickest possible 

complete quantum search) when the probability of successful search is 84 percent, and 

second, that parallelization, even in the optimal case, is useful primarily as a stay against 

decoherence; indeed, since the gain in time turns out to be oNk) for a parallel quantum 

search by k quantum computers, the cumulative time of the parallel search actually 

exceeds that of a single-agent search by a factor oUfk). 

C.   STRUCTURED QUANTUM SEARCHING 

Hogg [74] noted that the potential of quantum computation is difficult to evaluate 

on the basis of overly specific (e.g., factoring) or general (e.g., unstructured search) 

algorithms. An intermediate problem in this context is the so-called random K-SAT 

(satisfiability) problem [81], in which a solution to a formula 

m m      K 

F=AC;=/\ V bm 
(=1 1 = 17(0=1 

satisfies all m clauses of logical-ORs and NOTs of K{of n total) Boolean variables. Here, 

the fe-terms denote literals (i.e., either a variable or its negation, with equal probabilities). 

Varying the ratio of clauses to total variables leads to a phase transition in the problem 

difficulty [82], [105]: if this ratio is small, then many solutions exist and the problem is 

easy; if it is large, then no solution exists and the decision problem [11] is easy. For 

intermediate values, however, the problem is difficult. Hogg studied quantum- 

computational approaches to 2T-SAT for the maximally constrained case (i.e., for the 

largest number of clauses possible in order to retain a solution) [73] and near the phase 

transition [74]. 

(The random K-SAT problem has recently been extensively investigated. In 

particular, composite problems interpolating between K = 2 [which has a linear time 
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solution] and K = 3 [which is NP-complete] and the accompanying phase transition [82], 

[105] have been the source of considerable interest owing to their status as transitional 

prototype problems.) 

The general method of attack for such a problem is to perform a quantum search 

of partial solutions and use this to restrict the remainder of the search space [36]. 

Restricting the search space improves classical and quantum algorithms by raising the 

execution time of both to the same power a < 1; the quadratic speedup afforded by 

Grover's algorithm for haystack searches holds for structured searches. (Search 

algorithms which run in linear time classically—such as maximally constrained 

K-SAT—experience a speedup to constant time [73].) Successive restrictions do the 

same, with progressively smaller exponents. In this sense the structured search can be 

seen as a generalized dynamic tree search, with the limiting case of a fixed (e.g., binary) 

tree search requiring logarithmic time (which is consistent with the power-law scaling). 

With this in mind, the quadratic speedup may be said to be a universal feature of quantum 

versus classical structured search methods [29], [36]. 

It is interesting that spin glass models have been applied to the study of random 

K-SAT [24]. A vast undiscovered country with the potential to provide feasible solutions 

to general hard problems—as well as fundamental information on the difficulties and 

limits of computation—lies at the confluence of spin glasses, satisfiability and other hard 

problems, and quantum computation. In particular, analyses of heuristic searches and 

optimization routines hold promise for evaluating quantum computation [74], [75]. Such 

heuristics can also find application in (e.g.) the traveling salesman problem [75] and 

game-theoretic routines (e.g., minimax or checkmate searches); the possibility of 

performing wargaming or logistical computations on quantum computers merits 

examination. Even a protocol for appointment scheduling exists [32]. 
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V. OTHER SELECTED ALGORITHMS 

A.   INTEGRATION 

Abrams and Williams [3] have refined a novel technique of Grover [68] for 

approximating integrals (equivalently, the mean of a sequence) iteratively on a quantum 

computer. Their approach is not dissimilar to the Monte Carlo method of integration 

(where the integral is approximated by the function values at random points) but offers a 

quadratic speedup over it (and a speedup over deterministic methods that is exponential 

in the dimension of the function space); indeed, their method is based on the same 

amplitude amplification principle as a quantum search algorithm. 

Let E be an estimated value of S = (/), the average of a step function (without loss 

of generality assumed to have range contained in the unit interval over a uniformly 

subdivided unit d-cube): 

1 M 1 M 
5 = T77      X/(VM,a2/M,...,ari/M) = —      ^f(a„a2,...,ad) . 

Put D = S-E and g = f-E, so that D = {g). 

Use the Walsh-Hadamard operator to prepare the state 

1 M 

-7=7       Xh'a2>--->fl,/)|U> 
yM    0],02 <v=i 

and apply a rotation to the second register to get 

/M     a\,a1,...,a({=-\ 

m      . ,—__—, ,—  
'Z^-g2{a1,a2,...,ad)\al,a2,...,ad)\0) + g(a1,a2,...,ad)\al,a2,...,ad)\l) 

and apply the inverse Walsh-Hadamard operator. It so happens that the probability of 

observing |0)|1) is D. By performing the above procedure from scratch enough times we 

can therefore determine D (and hence E and thence S). If, however, we consider the 

rotation of the first qubit as the rotation in a quantum search algorithm and |0)|1) as our 

target state, we can perform an amplitude amplification by repeating this sequence of 

operations. This is quadratically faster than sampling—of order the inverse (as opposed 

to the inverse square) of the desired accuracy. 
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Alternatively, quantum counting [29], a variant of amplitude amplification, can be 

used. In this scenario an auxiliary parameter q with integer values from 1 to Q (deter- 

mined by the desired degree of accuracy) is introduced so that the mean of the Boolean 

function 

/                      N_Jl    if   q<Q-f(ava2,...,ad) 

[0   if   q>Q-f(al,a2 ad) 

equals S. The number r of solutions of b = 1 can be counted by invoking amplitude 

amplification because the amplitude of a single rotation turns out to be proportional to the 

square root of r. If a superposition of states corresponding to successive powers of the 

basic amplifying rotation is created, then r can be determined by performing a QFT on a 

register indicating the power or number of rotations. (See V.B for a similar procedure in 

the context of eigenvalue estimation as applied to quantum mechanical simulation.) The 

performance of this algorithm also scales inversely to the desired accuracy. Details can be 

found in [3]. 

As it turns out, the principal difficulty with Monte Carlo integration and classical 

implementations of probabilistic algorithms in general is generating truly random points: 

as Knuth points out [88], generating even suitably good pseudorandom values is very 

difficult (it could be said that all the cryptographers in the world have failed to devise a 

pseudorandom number generator which performs well enough to satisfy themselves). It is 

also interesting that the runtime of the Monte Carlo method and general amplitude 

amplification algorithms depend not on the size of the problem per se but rather on the 

desired accuracy (a function of the number of measurements required for a sufficiently 

high probability of getting the correct answer, which will in some sense depend on the 

problem size). 

B.    SIMULATION OF LOCAL QUANTUM SYSTEMS 

Quite possibly the most important—and most immediately realizable— 

application of quantum computing is the purpose which Feynman originally envisioned: 

simulating quantum mechanics [96]. Lloyd [95] provided the basic theoretical framework 

for directly simulating any local quantum system (such as an Ising [63], [93] or lattice 

gauge [110] model) with an exponential improvement over classical simulation. 

Interestingly, the converse is commonplace: quantum computers are frequently simulated 

via Ising spin models. 
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Lloyd's basic setup is as follows. A local quantum system with Hamiltonian 

J=I 

such that each term in the sum acts on a local Hilbert space of finite dimension 

dj = dim(supp(w - H;)) and has a time-evolution operator which is decomposed over short 

time intervals via the Campbell-Baker-Hausdorff formula [117]: 

eM' 
U=' 

(   I Y'AI M-r (.J\mAr\ 

J j>k Z AT 

where simulating each operator e'"1^ requires o[d)) operations. Under this decom- 

position the total number of operations for the time evolution operator is o(rtmax(d?)/AT); 

with this in mind, we require that the number I of terms in the Hamiltonian should scale 

as a polynomial function of the number of variables or particles. Moreover, we can use 

this complexity analysis to specify the number (n) of time slices required for a simulation 

of a given accuracy. Finally, this formalized scheme can accommodate environmental 

interactions either by including extra terms in the model Hamiltonian or, more elegantly, 

by simply scaling the computer's environment suitably and exploiting, say, decoherence 

in the physical system to simulate decoherence in the model system. 

In [1] Abrams and Lloyd also outlined an efficient polynomial algorithm for 

producing an antisymmetrized superposition of states representing the initial state of a 

fermionic system of k particles, which can then be time-evolved as above. As an alter- 

native, they propose a model based on a quantum field-theoretic or second quantized 

[110] formalism which is sometimes in principle (i.e., when the number of particles k « 

m, where m is the number of single particle states) more efficient, owing to the Pauli 

exclusion principle and the concomitant encoding of the state of the fermionic system 

into a bit vector of length m. The field-theoretic formulation and its corresponding time 

evolution are more involved, however; refer to [1] for the details. 

Abrams and Lloyd, following Cleve et al. [41], also proposed a more explicit 

methodology for using the QFT to find eigenvalues and infer eigenvectors of evolution 

operators (hence also of Hamiltonians) in polynomial time [2]. We sketch the procedure 

for determining the eigenvalues. 

•      Step 0: Initialize a qubit string |0)|y/) of length m + I , where \y/) is an 

approximate eigenvector of the time evolution operator u = e~ 

\(4>k\¥)[2=0(poly(l)), 
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where </>k, \=eiak are the eigenvectors and eigenvalues of U. (Such an 
approximate eigenvector can be generated in polynomial time by invoking a 
classical approximation.) 

Step 1: Apply the QFT on the index register, obtaining the state 

1 lb». 
Step 2: Produce the state 

1 %P1\yf)^%PJ2(*M*>)^l{m%¥->%) 12"'  M V2m  ,=<> t V2m ~ ~ 

by, for example, binary exponentiation of the evolution operator conditioned 
on the first register. (This step is reminiscent of quantum counting, cf. IV.A.) 

•      Step 3: Apply the QFT on the index register again to get 

Step 4: Perform a measurement on the index register. The probability of 
measuring |^) is 

A polynomial number of repetitions then gives the eigenvalues satisfying the 

approximation requirement in Step 0 with an accuracy which scales as 2'"'. By 

performing the CBH decomposition as above, the evolution operator can be realized and 

the problem solved in polynomial time. 

Kitaev's algorithm [83] is in the same spirit as the Abrams-Lloyd algorithm: both 

are instances of the eigenvalue estimation meta-algorithm. The latter, however, can be 

exploited to determine physical quantities which are also functions of the eigenvectors, 

such as charge density and momentum distributions or correlation functions [2]. 

C.   QUANTUM CELLULAR AUTOMATA 

It has long been known that cellular automata (CA)—and particularly reversible 

CA—are universal models of computation [61], [131]. As a consequence, certain so- 

called lattice-gas cellular automata (LGCA) and related ballistic systems can perform 

computation as a manifestation of their quasi-physical dynamics [39]. Therefore, it is 

natural in this context to wonder whether a direct physical incarnation of a CA (or 

LGCA) can be realized. 
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It so happens that quantum cellular automata (QCA) and quantum lattice gas 

automata (QLGA) can be defined [103]. The collision operator or transition rule is given 

as a sort of S-matrix which acts on superpositions of incoming states and yields super- 

positions of outgoing states at each time step, rather than a deterministic or probabilistic 

rule operating on fixed states which cannot be superposed. 

LGCA such as the FHP hydrodynamical models and the lattice-Boltzmann 

models obtained by averaging the quantities in the collision operator thereof [39] can 

simulate instances of the Navier-Stokes equations. In much the same way, QLGA can 

simulate the TV-body Schrödinger equation [24] or the TV-body Dirac equation in one 

dimension [58], [103]. (Interestingly enough, QCA have even been considered as a 

vehicle to simulate Navier-Stokes [135].) 

The details of simulating the TV-body Schrödinger equation in d dimensions are 

involved; for them refer to [25]. The generic dynamics are given by equations of the form 

V„..,„ (*i + £c,,...,xN + £cN,t + 1) = rjSitJly/h...,„(xx,...,xN,t) , 
k,l 

where ec, is a lattice vector. (A general LGA can also be put in this form; the key is that 

the collision operator here is an S-matrix and not a classical "billiard-ball" collision 

operator such as arises in, e.g., FHP models.) It is worth noting that this model allows for 

the inclusion of a general potential (via multiplication of the S-matrix by a position- 

dependent phase) and for hard-Bose or Fermi statistics. 

Interest in QCA is not just related to physical simulation, however. The 

universality properties of automata suggest architectures for actual quantum computers in 

much the same way that the universal Turing machine might have suggested a real 

computer using a magnetic tape. Benjamin and Johnson [14] have developed a prototype 

scheme for quantum computation that exploits conventional as well as quantum 

parallelism by considering various types of qubits or "cells." A certain cell type is 

associated with a distinct energy gap between its two states; the gate architecture in the 

prototype is given by the spatial configurations of various cell types into networks. 

However, the geometry of the network per se is inessential; the key is where the various 

cell types are located within the geometry. 

If, though, we can consider multiple-state quantum systems ("qubytes") such that 

we can restrict the allowable states selectively and independently from qubyte to qubyte 

in a reasonable manner, we can avoid building a specialized network for any one 

particular algorithm. (This generalization is analogous to the relationship between, say, a 
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mechanical differential equation solver and a PC loaded with a differential equation 

software package.) 

A specific example of such a cellular quantum computer utilizes two types of 

cells and (essentially) six local updates; this setup is sufficiently general to provide a 

universal quantum computer which can be massively parallelized spatially ("pipelined"). 

By performing massively parallel independent amplitude amplifications and sequentially 

measuring the network output nodes as successive amplifications take place on the 

remainder, the runtime of a search would reduce in line with the later results of [62] for 

optimal parallel search. 
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VI. QUANTUM INFORMATION THEORY 

A.   QUANTUM COMMUNICATION CHANNELS 

Consider for the moment a classical (n, k) linear binary code C (Appendix B). In 

this context, error correction and decoding are deterministic processes. That is, a given k- 

block has a unique associated codeword (i.e., a canonical representative of the code co- 

set of which the block is a member) which is then transmitted, received, and decoded 

uniquely. If the transmitted and received n-blocks belong to the same co-set of the 

equivalence relation induced by C, then the error-correction mechanism will succeed. 

In the quantum regime, we can consider the coding problem in an ensemble as 

well as the possibility of decoding errors (note that encoding errors and transmission 

errors are effectively the same thing). Now the channel can be represented by the S- 

sequence: 

S: tfk <S> #■"-* —£-» jf" —T—> jf" —£-» Hk ® X"-k —£-> W    ® > #* <g> #■"""* , 

where the last two stages of the sequence may repeat several times if detectable errors 

occur during the decoding process. The operators are unitary and act on the n-qubit 

Hilbert space, and © = <E~\ If we assume, for example, that decoding is error free and only 

one-qubit rotation errors (distributed symmetrically over, say, a parameter space 

-1 < 6 < 1) occur, the 5-sequence becomes 

S = © o ® Re o <E . 

(The tacit assumption here is that most of the terms in the tensor product are effectively 

identity operators.) 

Suppose further that the (classical) probability of a single one-qubit error 

occurring is p (presumably a time-dependent function) and that errors are independent. 

Then the probability of m one-qubit errors is given by a binomial distribution, and we 

find that the ensemble output of the channel can be represented by an ensemble density 
matrix: 
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X'pr(|fl,0>)pM), = lPr(|a,0))I 5>-(l - Pr]b(a){ji)(b(a){f 
«=o <i=n m=nM„, 

(where the strike through the tensor product indicates suppression of factors that are 

effectively identity operators). The von Neumann entropy is defined for a density matrix 

p as //(p) = -7V(plog,p) (which is well defined since the density matrix is a positive 

operator and the techniques of spectral functional calculus can be brought to bear on it 

[43]). It turns out [118] that the von Neumann entropy is the appropriate generalization of 

the classical Shannon entropy insofar as it is an ideal lower bound on the expected length 

of a qubit string encoding the ensemble described by the density matrix. 

The Levitin-Holevo upper bound (see, e.g., [71]) on the classical mutual 

information is given by 

H IPr(«)p„   -lPr(a)tf(p„) i 

if there are no transmission errors in our example, then the density matrices represent 

pure states, the second term vanishes, and what remains is just the von Neumann entropy. 

(However, the above expression holds even when the input states are mixed.) It was 

shown in [71] that by coding properly (and in the absence of noise) the classical mutual 

information per qubit can be brought arbitrarily close to the ensemble von Neumann 

entropy. From this it follows that the natural definition for a quantum channel capacity is 

the maximum possible von Neumann entropy (since this is also the maximum classical 

mutual information). 

The, fidelity of our ensemble 5-sequence in our example is now 

F = (7>«fl,0|S|fl,0)p)) 

1    o=<> -I     »'=<HJ}„, 

o,0 Mfl)in  )Pede- 

This and like expressions are realistic gauges of a quantum error-correcting code or a 

quantum channel [84], and its calculation requires for a given code and signal ensemble 

only the probability of a single error occurring and a probabilistic description of a one- 

qubit error operator, both of which can be determined through experiment. Moreover, it is 

clear that a similar (but more complicated) expression holds when allowing errors in the 

encoding and decoding stages of the 5-sequence or many-qubit errors. These extensions 

are straightforward. Not so straightforward is the inclusion of decoherence as a 
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transmission error, which is of primary concern because the process of decoherence is 

effectively nonunitary and in particular can result in what amounts to a non-invertible S- 

sequence in which the input signal space is collapsed onto a subspace. In any case, our 

definition of fidelity is essentially the average fidelity of [34]; similar definitions can be 

found throughout the literature, almost all with particular variations. 

Schumacher showed in [118] that a quantum analog of Shannon's noiseless 

coding theorem holds. In particular, let a quantum channel have the (quantum) capacity C 

and a quantum source the entropy per unit time H. If H < C, there exists a coding system 

such that the output of the source can be transmitted (but not copied) over the channel 

with a fidelity arbitrarily close to unity. 

The prohibition against copying is problematic. The no-cloning theorem [133] 

explains why it exists. That is, suppose there exists a unitary operator U such that 

t/(|fl>|0» = |a>|fl> for all \a). Then, if we have orthogonal states |a>|0>, \b)\0), it follows that 

(ignoring normalizations) £/(|a>|0» + E7(|fc>|0» = |a>|a> + \b)\b). But U{\a)\0)) + UQb)\0)) = 

UQa)\0) + \b)\0)) = U((\a) + |fc»|0» = (|a> + \b))(\a) + \b)) * \a)\a) + \b)\b). 

In some other respects, however, quantum information offers advantages over 

classical information: by sharing an EPR pair for each transmitted qubit the classical 

Shannon entropy bound (though not the von Neumann entropy bound) can be violated by 

up to a factor of 2 (less for submaximal entanglement); this phenomenon is called 

superdense coding. The basic idea [17] is that Alice encodes a two-bit number by 

applying one of the (four) Pauli matrices to her half of an EPR pair and sending the 

resulting state to Bob. By performing an XOR to the entangled pair Bob disentangles it; 

Bob can then perform a measurement on the second qubit (which is then either |0) or |1»; 

Bob then applies the Walsh-Hadamard transform to the first qubit (which is then also 

either |0) or |1». As we shall see below, superdense coding is related to a dual protocol 

called quantum teleportation. 

B.    QUANTUM ERROR-CORRECTING CODES 

Given that codes exist that allow the faithful maintenance or transmission of 

quantum information, it is natural to ask what form such a code might take. Indeed, the 

situation is much the same in the quantum as in the classical regime in that the noiseless 

coding theorems do not specify a coding scheme. However, the partial correspondence 

between classical and quantum information provides a partial answer. 
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For example, although the triple repetition code cannot be carried over into the 

quantum regime wholesale [because of the no-cloning theorem, e.g., although a (3, 1) 

quantum quasi-code is allowed which can correct a restricted class of (Boolean) errors], a 

(9, 1) quantum code based on it exists. Ignoring normalizations, 

|0)->|0)9=(|000) + |111))(|000) + |111))(|000) + |111)) 

|1>^|1)9=(|000)-|111»(|000)-|111))(|000>-|111»   , 

and if we consider the (standard) error basis of Pauli matrices, 

(o n     (\   o\     (o -A 
Id,X= , Z = , Y=   . =iXZ , (° ]) 7 = 

(\ 0) 
Y = f° -A 

[\   oj l« -1J I' oj 
then the nine-qubit code can correct any linear combination of the errors in the error basis 

applied to a single qubit [121]. That is, using the parity or majority rule, the first and third 

terms in the product can correct a Z error; the second term can correct an X error, and 

hence any one-qubit or Pauli error in the group generated by the Pauli matrices can be 

corrected. The correction technique uses an ancilla qubit that will, under measurement, 

collapse its product with a nine-qubit codeword into either an error state with an error 

recorded in the ancilla (i.e., a syndrome) or into the original state without a recorded 

error. In either case, measuring the ancilla allows the determination of a single error 

which can then be explicitly reversed [66]. 

Calderbank and Shor [34] and Steane [127] first developed the notion of a general 

quantum (n, k) error-correcting code, which can be defined as a linear subspace 

C = c* = H * of H ". Their initial work introduced the CSS codes constructed from two 

classical error-correcting codes with 0cc2cc,cZ; which respectively correct phase and 

bit-flip errors. The basic idea is as follows: a CSS code is formed from the derived states 

(ignoring normalizations) 

k)s 5>+w>» 

where vec,. It happens that a CSS code is a /-error correcting («,dimc, -dimc2) quantum 

code, where t is the smaller of the weights of c,, q. Under the change of basis induced by 

a Walsh-Hadamard transform, the code maps to the dual code with Occ,1 cq1 cZ"2, and 

the codewords themselves map as 

k>=Iiv+w>^-»lcv)=IH)»- 
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Phase errors in the original basis map to bit-flip errors in the Walsh-Hadamard 

basis and vice versa. It therefore suffices to correct bit-flip errors (which are the 

analogues of classical errors) and perform Walsh-Hadamard transformations, then finally 

correct any remaining bit-flip errors. 

Along with several quantum codes, bounds on quantum code parameters have 

also been obtained (which have in turn led to the discovery of quantum codes). In [34] a 

lower bound acting as counterpart to the Levitin-Holevo bound on the asymptotic rates of 

certain perfect (i.e., having fidelity 1) quantum (n, k) f-error correcting codes was 

derived: k/n = l-2H2(2t/n), where -H2(x) = x\og2x + {l-x)\og2(l-x). Moreover, a perfect 

quantum (n, k) f-error correcting code must satisfy n>4t + k [83]. In particular a (3, 1) 

perfect quantum code that corrects one error violates this bound and hence cannot exist. 

However, a perfect (5, 1) one-error correcting quantum code exists [89]: 

|0)->|0>5=HOOOOO> + |01111>-|10011> + |11100> + |00110> + |01001> + |10101> + |11010) 

|l)-»|l>5=-jlllll) + |10000) + |01100>-|00011> + |11001> + |10110)-|01010)-|00101>. 

The decoding quantum circuit for the five-qubit code is simply the reversed-order 

encoding circuit. In this respect the five-qubit code is significant in that it saturates an 

algebraic bound and can be realized with a minimum of overhead. 

If now we set 

9*    J 

u. 
then the quantum Gilbert-Varshamov lower bound is E{d -1) = E(2t) < 1, which reduces in 

the limit of large n with kin, tin fixed to k/n<\- log2 3 • 2t/n - H2 {ItIn). It can be shown that 

if the Gilbert-Varshamov bound holds, then there exists a quantum (n, k) t-error 

correcting code [35]. 

The quantum Hamming bound (the analog of the classical Hamming or sphere- 

packing bound [112] obtained by considering rather than one classical one-bit error three 

distinct possible single-qubit or Pauli errors) is£(?)<l. Although the quantum Hamming 

bound holds for nondegenerate codes (those codes for which all errors are distinguishable 

from one another), it is not known whether it applies more generally. In [64], Gottesman 

showed that a class of (2\2' -j-2) 1-error correcting quantum codes saturating the 

quantum Hamming bound exists. 

Quantum error correction can be placed under the broader umbrella of fault- 

tolerant quantum computing; this also encompasses roles such as robust gate application 
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in the presence of errors (the requirement for which was hinted at in our previous 

discussion of quantum channels) and entanglement purification or distillation. The 

interested reader is referred to [20], [65], [113]. Other quantum codes (e.g., quantum 

stabilizer codes) have been developed; some are touched on in [35], [65]. 

C.   QUANTUM KEY DISTRIBUTION 

Before serious consideration was ever given to quantum computation, quantum 

cryptography was being explored as an instance of the power of quantum information: 

asymmetric/public-key schemes such as RSA suffer from an inherent susceptibility to 

computational attack (Appendix A), whereas symmetric/private-key schemes such as 

DES or IDEA suffer from this and the key distribution problem: if the key to a symmetric 

cipher could already be securely transmitted, then there would be no point in actually 

transmitting it [99]. Of course, in practice what is done is generally either to distribute 

keys locally and transport them securely or to encipher keys using an asymmetric scheme 

(as is the case with PGP). But neither one of these procedures is invulnerable. 

Furthermore, there is only one totally secure classical cryptologic protocol: the 

one-time pad or Vernam cipher [102]. The scheme is trivial to describe. Let Alice and 

Bob alone share a perfectly random bitstring. To encrypt a message, Alice simply XORs 

it with the random bitstring; to decrypt the message Bob does exactly the same. The one- 

time pad is in fact used where absolute security is paramount; despite its simplicity, 

however, it is extremely difficult to implement in practice. For example, the key 

distribution problem is critical, and security demands that only physically secure and 

authenticated key distribution is acceptable. Moreover, a one-time pad has its name for a 

reason: using the same pad to encrypt two messages utterly compromises its security. 

This, coupled with any but the smallest traffic volumes, immediately renders one-time 

pads infeasible for most practical cryptologic applications [102]. 

Quantum channels provide a way to make an end run around these problems. 

Basically, if Eve were to attempt to intercept a quantum key transmission between Alice 

and Bob, she would inevitably alter the key—and Alice and Bob can use a protocol 

which exploits this property and subjects the transmitted and received keys to joint 

statistical tests which establish the security of the transmission. Hence, quantum key 

distribution (QKD) provides security based on the laws of physics rather than the 

supposed computational infeasibility of inverting one-way functions or of exhaustively 

searching the keyspace of a cryptosystem (which would be an ideal problem for a 

quantum computer). 
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We sketch the basics of the BB84 QKD protocol [16] here. Let |->, |+> denote the 

images of |0), |1> (with |-), |0) both corresponding to a classical 0 and |+>, |1) both 

corresponding to a classical 1) under the Walsh-Hadamard transform: both the signed and 

numbered key pairs form bases (denoted by R and S, respectively) for a one-qubit state 

space. 

To send a key, Alice and Bob perform the following sequence of operations for 

each bit to be transmitted: Alice first chooses either the R or S basis at random and 

transmits the state corresponding to a random classical bit in her chosen basis. Bob also 

chooses one of the bases R, S at random—independently of Alice—and performs a 

measurement. If Alice and Bob used the same basis (and the bit was not intercepted by 

Eve) then the state encoding the classical random bit will have been perfectly transmitted. 

With this in mind, Alice and Bob publicly announce their basis selections after all the 

transmissions are complete: statistically, half of these will agree, and the corresponding 

classical bits form their provisional shared secret key. To establish its security, Alice and 

Bob now publicly announce some of the bits of their shared key (which reduces the key 

length): if these pass certain public statistical procedures (such as testing for a sufficiently 

low error rate and subsequent classical error correction) then they conclude that the key is 

secure, since if Eve intercepted the transmission and resent identical states after 

measuring them in one of the bases, she would send, on average, half her qubits in the 

wrong basis—and the resultant statistical anomaly would be detected by Alice and Bob. 

Finally a privacy amplification protocol is performed whereby m bitstrings of length n 

equal to the key length (with m < n) are published and the m parities of the XORS are 

retained as the final key [23]. 

There are attacks on QKD protocols other than the tapping attack described 

above. In particular, the entanglement attack, in which Eve entangles her interception 

apparatus with Alice and Bob's quantum channel, is problematic. Similarly, the swap 

attack—whereby Eve stores Alice's transmitted quantum states and sends her own 

random states to Bob—will succeed occasionally, albeit with exponentially small 

probability. Of course, any cryptosystem would "suffer" from the exponentially small 

probability of an adversary correctly guessing a key, and so the security of a QKD 

protocol is really contingent only on ensuring that the joint probability of the security test 

passing and Eve gaining more than an exponentially small amount of information about 

the key is itself exponentially small. 

It has recently been shown that several QKD protocols are unconditionally secure 

in this sense through their relationship to a derived protocol, based on CSS codes, which 
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is provably secure [123]. The proof furthers work in [98] and [23], wherein the 

unconditional security of QKD protocols was demonstrated along more complicated 

lines. Furthermore, it has been shown that error rates of up to 7.56 percent can give 

asymptotic security (with higher error rates possible under protocol modifications or 

practical security parameters) [23]. 

QKD and quantum error correction protocols can also depend on entanglement 

distillation or purification schemes (see below). It is noteworthy that QKD has recently 

been experimentally realized over 48 km fibers [77] and in daylight over 1.6 km [33]. 

D.   EXPLOITING ENTANGLEMENT: QUANTUM TELEPORTATION AND 
COMMUNICATION COMPLEXITY 

It has been known for some time that transmitting quantum information need not 

take place over quantum channels; indeed, the protocol of quantum teleportation provides 

an avenue for constructing quantum states from classical information [18]. We omit 

normalizations throughout the following simplified outline, which otherwise follows 

[114]. If Alice has a qubit \<p) = a\0) + b\l) which has not been measured (so that she has 

no knowledge of a, b) and she and Bob share an EPR pair |00) + |11) (of which, say, the 

first qubit is Alice's), then Alice considers the state |0)(|OO) + |11» = a|000) + a|011) + 

&|100) + b\\ 11). If now Alice applies a XOR to the first two qubits and then a Walsh- 

Hadamard transform on the first qubit, as in superdense (de)coding, the three-qubit state 

becomes 

|00>(fl|0> + b\\)) + |1 l>(fl|l> + fc|0» + |10>(fl|0> - b\\)) + |1 l)(fl|l> -b\0)). 

A measurement on the first pair collapses the pair, the outcome of which Alice sends to 

Bob classically. Bob then applies the Pauli matrix corresponding to the result (Id for |00), 

X for |01), 7 for |10) or Z for |11». In the end, Bob is left with the state |0), and Alice, in 

accordance with the no-cloning theorem, is left with a known state which does not 

depend on \(p). 

As the case is put in [18], 

This would appear to offer a more elegant means of private communi- 
cations than previous quantum cryptographic schemes [BB84, etc.] which 
require the users to publicly test some of the data exchanged through the 
quantum channel, in order to certify the privacy of the rest. However, the 
appearance of intrinsic security is illusory, since an active adversary could 
effectively tap into the channel by intercepting all the particles on their 
way to and from Bob, substituting others in such a way as to impersonate 
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Alice to Bob and Bob to Alice. To defend against this attack Alice and 
Bob would also need to publicly test some of their data, rendering the 
present scheme cryptograhically equivalent to previous schemes, while 
retaining its distinctive quantum information-theoretic feature of packing 
two bits into a single transmitted two-state particle. 

Nevertheless, teleportation has a distinct advantage over QKD protocols, for 

which Alice has to transmit quantum states at the time she wishes to send Bob any 

information. For teleportation, on the other hand, the requirement is the advance distribu- 

tion and storage of entangled pairs. Though this is a technical obstacle, overcoming it (a 

necessary step anyway for a realistic quantum computer) would tilt the balance of utility 

decisively towards teleportation. More generally, it could be said that teleportation has 

this intrinsic advantage over any other quantum communication scheme, not least 

because it avoids the problems of time-of-transmission errors and therefore allows high- 

fidelity quantum communication. 

Indeed, it has been shown [19] that a collection of shared impure entangled pairs 

can be distilled or purified into a smaller collection of asymptotically pure entangled 

pairs, which can in turn be used for faithful teleportation. In this setting the fidelity is 

replaced with the yield of pure pairs. The purification protocol requires only simple 

quantum gates (notably, a bilateral XOR performed by Alice and Bob on two entangled 

pairs). 

So entanglement can serve as a surrogate for communicating unknown informa- 

tion; therefore, it is natural to expect that it can be likewise be exploited in the realm of 

distributed quantum computation (where after all we are dealing with states which we 

cannot access without a measurement). Indeed this is the case: Grover [68] showed that a 

distributed set of coupled EPR pairs could act in parallel to compute the mean of a 

function (see also VA) with minimal (classical) communication complexity. 

Finally, any "black-box" quantum algorithm (in particular, any amplitude 

amplification) can be efficiently realized as a related communication protocol. In 

particular, search algorithms can be realized as quantum communication protocols which 

offer the same quadratic speedup. This is the well-known "appointment scheduling" 

result [32]. 
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VII. CONCLUSION 

Even considering that this paper is a survey of quantum algorithms and protocols, 

we have not touched on several elements of the general theory. As far as specifics are 

concerned, we have deliberately omitted discussion of recent protocols for clock 

synchronization [38], [81] because these merit in-depth study in their own right. More 

generally, we have avoided the topics of physical systems for quantum information 

devices (see, e.g., [79], [128]) and of the impact of decoherence and errors on 

implementations of protocols and algorithms on quantum information devices (see, e.g., 

[37], [129]). While strictly speaking neither is premature to address, both of these areas 

require extraordinary intellectual overhead, and indeed these are precursors to the most 

important area of concern: applications. Similarly, addressing the problem of spelling out 

quantum algorithms in circuit models as precursors to their actual implementation is a 

large undertaking. Some basic scenarios have been examined, however. For example, a 

proof-of-principle factorization of 15 could be performed with an ion trap quantum 

computer using as few as 6 qubits and 38 laser pulses [10]. 

The questions of exploiting Aharonov-Bohm effects for error correction and of 

how to quantify multipartite entanglement are also of considerable theoretical interest and 

are as of yet unanswered; these and like issues merit further analysis. 

Certainly, if scalable quantum computers are built, then cryptography as we know 

it is dead. More generally, it is reasonable to assume that a quantum computer would lead 

to revolutions in physical simulation with the potential to transfigure nanotechnology. 

Other possible benefits merit consideration also. Problems in combinatorial analysis and 

statistical decision theory [75], [78] are natural candidates for solution on a quantum 

computer. Further and as-yet undiscovered applications surely exist. 

At this point it is appropriate to say some words about whether a scalable 

quantum computer will in fact ever be built. The author believes that such devices could 

well be built within 20 years. Regardless of whether this turns out to be the case, it is 

certain that current experimental research on manipulating quantum systems will yield 

dividends. Quantum information has the potential to reshape the world—we have seen 

why—and at this point it is important to begin considering how. 
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APPENDIX A 

HARD NUMBER-THEORETIC PROBLEMS 

A.   THE TROUBLE WITH FACTORING 

The difficulty of the factoring problem has long been known. Eratosthenes of 

Kyrene (ca. 250 BC) provided the first factoring algorithm: given a composite number N, 

proceed with trial division by all prime numbers less than or equal to its square root. 

The prime number theorem states that the number of primes less than or equal to 

N is asymptotically x(N)~N/logN [100], and so the sieve of Eratosthenes takes 

asymptotically as many as V/V log2/logN trial divisions if we have a precomputed list of 

prime numbers (the construction of which would presumably also require sieving). Thus, 

factoring a 1,024-bit integer via this method requires on the order of 2502 trial divisions: 

rather a lot. Moreover, it should be remembered that division is computationally 

expensive. 

Over the millennia various advances in factoring have taken place. The current 

champion of factoring algorithms is the general number field sieve (GNFS) [92], of 

which we provide a technical sketch based on the discussion in [31]. The overall aim (and 

computationally intensive part, which we will not sketch) of the GNFS is to efficiently 

construct (using a root 0 of a monic polynomial / with integer coefficients) a factor base 

U in the number field Q(0) (obtained by adjoining 0 to the rational numbers and 

considering the field that is generated as a result) consisting of algebraic integers (i.e., 

roots of monic polynomials with integer coefficients also lying in Q(0)) [54]. 

Given such a factor base U such that the product of its elements, 

Y[{a + bd) = a2 , 
r=a+b6sU 

is a square of an element of the ring Z(0) generated by 0 and 

Y[(a + bm) = c2 

for integers a, b, c, and m with f(m) = 0 mod N, it follows that if we define a subjective 

ring homomorphism <pm ■. Z(0) -*ZN satisfying 0,„(l) = 1, <j>m(0) = m, then 
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=(f{m)) n (*+bm) - f m°d N, 

and combining this with the general "difference of squares" result that gcd(x ±y,N) 

divides TV for x2 = y~ mod N, x * y, we arrive at a factorization. 

The GNFS has asymptotic running time LJI/3,(8/3)
2/1

], where 

LN[a,c] = o(exp((c + 0(l))(log/V)a(loglog/V)'-0)) 

is the Lucas complexity class [102]. Using this, we arrive at estimates of operation counts 

required for the GNFS. If we use as a benchmark 1,000 Macintosh G4 computers running 

the GNFS totally in parallel (the GNFS is highly parallelizable) at 1 Gflops each and 

identify this with 1 G(GNFS)ops, then the corresponding operation counts and runtime 

order estimates are as follows: 

Bit length O(Ops) O(time) (s) O(time) (yr) 

512 2M 1.8 107 5.6 

1,024 2s7 1.3 1014 4.2  107 

2,048 2"7 1.5-1023 4.2 • 1016 

Hence, factoring, for example, a 2,048-bit integer is computationally infeasible using the 

GNFS. 

A hard 512-bit number (RSA-155) was recently (August 1999) factored via a 

massively distributed sieving effort using roughly 300 computers—over half of them 

high-end workstations—over the course of 7.4 months (5.2 months for sieving and 

2.2 months to select an appropriate monic polynomial for the GNFS), plus the final 

solution time of the resulting massive sparse linear system via a specialized iterative 

technique [31], which required roughly 10 days on a Cray C916 [130]. 

It is therefore reasonable to assume that factoring 512-bit numbers is well within a 

temporal-computational scope corresponding to a capital outlay on the order of 

$10 million and a year of execution time for GNFS or a slightly better algorithm. Under 

these assumptions, however, 1,024-bit numbers are still inaccessible—at any price. 

Silverman notes in an RSA technical report that the bit length of the largest number 

openly factored as a function of the year has a linear fit (b = 14.05[y - 1970] + 23) with 

correlation coefficient .955, where b is the bit length and y is the year [124]. Another 

estimate based on extrapolating Moore's law arrives at a cube root fit which is cited in 
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[124]. Assuming these relationships hold indefinitely, we get the following estimates of 

the year of factorization capability for a given bit length: 

Bit length Linear fit Moore's law 

512 2,005 1,999 

1,024 2,041 2,018 

2,048 2,115 . 2,041 

This suggests that to factor numbers much larger than 512 bits it is better to wait for 

developments in algorithms and computers than to bother with the GNFS. 

B.   RSA 

Factoring is not just an academic exercise; indeed, the security of the nearly 

universal standard RSA public-key cryptosystem [115] hinges on the computational 

infeasibility of factoring large numbers. We present a sketch of the number-theoretic 

problem upon which the RSA protocols are based. 

Alice puts an RSA modulus N = pq for two large (and otherwise suitable) prime 

numbers p, q of equal or nearly equal length and picks an encryption key e such that 

gcd(e,{p-l){q-l)) = l. 

She can efficiently compute the decryption key 

d = e-lmod(p-l)(q-l). 

Alice publishes N and e, and keeps d, p, and q secret. If Bob wishes to send Alice 

a secret message M (here, just a number less than N), he encrypts it as C = MemodN. 

Alice then computes 

Cd mod N = Mde mod N s MM
""

1)(?
"

1)+1
 mod N s Mk*{N)+] mod N s M mod N , 

where the Euler phi function cp(N) is defined as the number of positive integers less than 

and relatively prime to N (in our case equal to (p - l)(q - 1)), and we have invoked 

Euler's theorem [88]: 

gcd(a, N) = 1 => a<*(A,) s 1 mod N . 

Since (by assumption and design) M is less than N, we recover the message uniquely. 

(N.B. By decomposing an arbitrary message into packets we can always do this.) 

The RSA problem is to derive M given N, e, and C; it is generally suspected [102] 

(though not known) that this is polytime equivalent to factoring (certainly factoring 
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moduli gives efficient solutions of RSA). Therefore, we may reinterpret the tables from 

the previous section as security parameters for the RSA cryptosystem, and provide a new 

context in which the factoring problem may be said to be important. 

C.   THE DISCRETE LOGARITHM PROBLEM 

If p is a prime number, the multiplicative group Z'r is cyclic, and the discrete 

logarithm problem (DLP) for a generator a and arbitrary unit ß is to determine (the 

unique) x such that ax = ßmoAp [102]. The DLP generalizes to algebraic curves with 

group structures [87], but we shall not consider these here. 

The ElGamal [55] and Digital Signature Algorithm [59] schemes (among others) 

rely on the DLP. Though ElGamal can be used for encryption, we sketch here only the 

basis for the authentication protocol. In this setting, Alice randomly picks two elements 

a and x in the cyclic group Z'p and computes 

ß = ax mod p. 

Alice publishes p, a and ß and keeps x secret. To authenticate a message M, Alice 

chooses a secret signature exponent k and computes 

a = a* mod p, b such that M = (ax + bk) mod{p - l). 

The public pair a, b is the signature. Authentication proceeds along the following lines: 

ß°ah mod p = aaxabk mod p = aax+bt mod p = aM mod p. 

DSA is similar in its operation, and in fact it can be shown [118] that they are 

both cases of a general DLP signature scheme for cyclic groups. 

Shor also provided in [122] an quantum-algorithmic solution to the DLP along 

much the same lines (and with a basically equal increase in efficiency) as for the 

factoring problem; Boneh and Lipton [27] obtained an analogous for algebraic curves. 

Kitaev's solution of the ASP encompasses these [83]. 
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APPENDIXE 
CLASSICAL INFORMATION THEORY 

A.   CLASSICAL ENTROPY, CHANNEL CAPACITY, AND ERROR 
CORRECTION 

Shannon [120] initiated the study of information theory; its basic building blocks 

are the notions of entropy and channel capacity. (The interested reader may also refer to 

[5] or [99] for brief or detailed discussions, respectively.) Given a statistical character- 

ization of a discrete channel—that is, given a random variable X which takes as its values 

the possible transmissions or events Ev...,En and their (presumably nonzero) associated 

probabilities plt...,pn, a reasonable measure / of information transmitted should satisfy 

the following criteria: 

I.      /InEj   >max/(£y)>0 

n.    I[oEj) = ^ r{Ej) f°r independent events. 

It can then be shown that / must be of the form I[E^ = -log2 pj (up to a multipli- 

cative constant) and so its expected value—the entropy—is 

H(X) = {l(X)) = -±Pj\og2Pj. 

In this context, the entropy can be said to be the appropriate measure of informa- 

tion (properly, of uncertainty) which is transmitted through a communication channel. 

We may also define the respective joint and conditional entropies for X, Yby 

H[x,Y) = -i  lpjk\o%1pjk 

7=1 

f m ^ 
I Pj{k)\o%lPj{k)  = I PJHJ{Y) 
' ' )    j=\ k=. 

where pj(k) = p[Y = k\X = j) is a conditional probability and the sum in parentheses is 

called the equivocation. It turns out that H{X,Y) = H(X) + HX(Y) = H(Y) +HY(X). 

Finally, we define the mutual information (Shannon's transmission rate) 

M(X,Y) = H(X)-HY(X) = H(Y)-HX(Y): since the conditional entropy is a measure of 

residual information, the mutual information is what it should be. 
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The channel capacity C is then the maximum possible value of the mutual 

information. Shannon proved the following theorem: 

Let a discrete channel have the capacity C and a discrete source the 
entropy per second H. If H < C there exists a coding system such that the 
output of the source can be transmitted over the channel with an arbitrarily 
small frequency of errors (or an arbitrarily small equivocation). If H > C it 
is possible to encode the source such that the equivocation is less than 
H - C + 8 where £ is arbitrarily small. There is no method of encoding 
which gives an equivocation less than H - C. 

Establishing the existence of good error-correcting codes is, however, a far cry 

from having (or being able to implement) good error-correcting codes. 

The simplest example of an error-correcting code is the triplet parity code: 0 is 

encoded as the codeword 000 and 1 as 111. A received triplet other than these is 

weighted: either it has two zeroes or two ones, according to which it is changed to 000 or 

111 accordingly. This is a specific instance (3, 1) of the more general notion of a linear 

binary (n, k) or (n, k, d) code. (Here, d refers to the minimum weight, or number of ones, 

in a codeword, and it can be shown that an (n, k, d) code can correct (d-\)l2 or fewer 

errors; the [integral] number t of errors a code can correct is referred to as its weight.) 

Such a code C is specified by, for example, a generator matrix G which can be assumed 

to be in the form (ld\A), where Id is the k-by-k identity matrix and A is a k-by-(n-k) matrix 

(equivalently, the dual code cxmay be characterized by the parity check matrix (-AT\ld)). 

The rows of the matrix G are then the basis codewords, and a generic bit string x of 

length k is encoded by producing the linear combination of basis codewords whose first k 

bits equal x. Hence, a linear code can also be described by the span of its basis 

codewords; this turns out to be the view most naturally suited to negotiating the 

correspondence between classical and quantum codes. 

The decoding process is generally difficult: each codeword has a large co-set of 

errorwords which (unless the code were engineered with viable algorithmic decoding 

schemes) has to be exhaustively searched. However, special decoding techniques exist 

(e.g., syndrome and Hamming decoding) which can dramatically reduce the computa- 

tional effort involved. Still, when n is large enough, an (n, k) code is infeasible to 

implement classically (if for no other reason than that processing with such a code is 

problematic from the standpoint of buffer size, bus speed, etc.). 

It turns out [112] that the (2"-* -U,3) Hamming and (23, 12, 7) Golay codes are 

the only nontrivial binary perfect (i.e., capable of correcting t errors) error-correcting 
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codes. This surprising fact serves to illustrate that the theory of classical error-correcting 

codes is deep and complex. We refer the reader to [111] or [112] for further details. 
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